
Barely Sufficient Software Engineering:
10 Practices to Improve Your CSE Software

Michael A. Heroux*
Sandia National Laboratories

maherou@sandia.gov

James M. Willenbring*
Sandia National Laboratories

jmwille@sandia.gov

Abstract

Computational Science and Engineering (CSE)
software is typically developed using research funding
where the primary focus is research and development
of advanced algorithms and modeling capabilities. As
a result, formal software engineering is seldom a
primary goal. CSE software developers intend to write
good software, but often lack the training, resources or
time to adopt advanced formal methods and practices.

In this paper, we present a list of practices
identified from the Trilinos project that we believe
most CSE software teams can adopt and from which
they can benefit.

1. Introduction

Computational science and engineering (CSE)
applications can benefit from adoption of some
commercial software engineering practices. However,
in our experience, many CSE software developers have
a skeptical view of formal software engineering
practices, if they have any opinion at all. This
impression comes from decades of working with CSE
applications as part of introducing mathematical
libraries into these codes and observing CSE software
teams and their processes.

In this paper we discuss a small collection of
practices that we believe can be most beneficial to CSE

software projects. All of these practices come from
our experience on the Trilinos project[1]. Some of
them are very close to practices advocated by the Agile
software development community [2], which shares
some common needs with CSE. In fact, the term
“barely sufficient” in our title is intended to reflect the
Agile philosophy toward formality in general. By
“barely sufficient” we mean that the practices we list
here provide a respectable but minimal foundation for
formal software engineering in support of CSE
software projects. Certainly additional practices are
valuable, but because of the nature of CSE software
funding (which is provided to conduct science and
engineering research and development, from which
software is only one of the deliverables) a heavy
emphasis on software engineering can be a distraction
to the real project goals.

1.1. Research vs. commercial software

Commercial software, written for the purpose of
generating revenue typically in domains where the
underlying algorithms and methodologies are mature,
has become increasingly sophisticated and complex,
yet at the same time more easily developed and more
reliable. Arguably this is primarily because software
engineering is becoming a more mature field, with
better-defined practices, more highly trained engineers
and repeatable, predictable processes.

In contrast, research software, primarily in CSE
disciplines, has as its main focus development of new
algorithms and modeling capabilities. Software is
developed as proof-of-concept and to generate first-of-
a-kind results. Highly trained scientists, not
professional software engineers, develop research

* Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United
States Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

PREPRESS PROOF FILE CAUSAL PRODUCTIONS1

software. These scientists typically have little formal
software engineering training but can often produce
high quality software by using common sense
principles and self-discipline. As a result, many CSE
research software efforts generate high quality
products, even though the software teams are largely
unaware of standard industry concepts and practices.
Even so, CSE software projects often apply basic
software principles in an ad hoc manner that makes it
difficult to leverage a product outside its narrowly
intended scope.

In our experience, adoption of formal software
practices by CSE projects is hindered by the fact that
the software product is primarily a vehicle for
producing science and engineering results, not an end
goal itself and a general impression that too much
formality can do more harm than good. As a result,
practices must be introduced carefully so that
generation of science and engineering results is not
negatively impacted and formality is gradually
increased.

As practices are introduced, the advantages of
each practice should be stressed carefully to the
development team. In our experience, it is important
that team members believe that a new practice will be
useful, otherwise there is a great risk that the practice
will not be followed consistently.

The Trilinos project is large-scale software effort
that has goals to develop state-of-the-art numerical
libraries for CSE, while at the same time incorporate
and adapt modern software engineering practices to
improve our processes and products. In this paper, we
reflect on our experiences with the intent to list and
describe those practices that can have a broad impact
on other CSE software projects.

The remainder of this paper discusses ten (actually
eleven) practices that we consider extremely useful for
any CSE software project. We recommend these
practices, without reserve, to anyone who wants to
have a better software product and spend less time
creating it so they can spend more time doing science
and engineering.

We complete this section by discussing “Practice
0” which we consider fundamentally important but so
basic that it should not need to be recommended.

1.2. Practice 0: Manage source (the basics)

Since Trilinos software consists of libraries, its
developers are often involved in the introduction of
Trilinos capabilities into existing CSE applications. As
a result, we often get exposure to the software practices
of other teams. In our experience, the vast majority of
CSE software projects use some form of source
management. Specifically, source files for the project
are kept on a common server where all team members
can obtain a working copy and no one directly
modifies the primary repository. However, we have
seen numerous cases, especially with new projects,
where developers do not use source management tools,
and even a few mature projects where the source
repository is hopelessly out of date with versions that
developers are using on a daily basis.

Therefore, we mention that the single most
important practice a software team can adopt is basic
source management. By this we mean that source files
are kept in a repository, developers regularly commit
changes to the repository, and the repository contents
are a vital resource to the project team.

2. The Ten Practices

2.1. Practice 1: Use issue-tracking software for
requirements, features and bugs.

Issue-tracking software provides a logical
collection point for information concerning bugs,
features, and requirements. There are several strong
reasons to use issue-tracking software, rather than
simply keeping personal files, reminders or post-it
notes. Specifically:

• Issues can be visible to the whole team.
• Issue-tracking software commonly provides the

ability to prioritize issues.
• Establishing dependencies between issues

provides the ability to break larger issues down
into pieces, or see how different issues affect one
another.

• The history of issues is kept in a searchable
location for future reference.

The dependency-tracking feature that many issue-
tracking systems support can be utilized in many ways.
For example, a large deliverable might depend on a
number of smaller feature enhancements. The

2

deliverable can be filed as one issue, and each of the
smaller enhancements can be a separate issue upon
which the large deliverable will depend, with different
groups of people tracking the progress of each issue.

For several years, the Trilinos team has used its
issue-tracking tool Bugzilla [9] to manage release
efforts. A slightly simplified view of this process is
that one bug (issue) is filed for the release of each
package (Trilinos functionality is composed of tens of
independent packages), and any specific issues
blocking the release of the package block the package
release bug. Then those package release bugs block a
bug that is filed for the release of all of Trilinos. Once
all of the bugs blocking the Trilinos release bug have
been resolved, and the Trilinos level release process
checklists have been completed, a release can be
certified. Using Bugzilla to manage this process
allows for a unified view of the outstanding issues
blocking the release.

2.2. Practice 2: Manage source (beyond the
basics)

Beyond basic source management, a repository
can serve many useful purposes if carefully used.
There are many source management tools available,
including SVN[3], CVS[4], and git[5]. Common
concepts in repository management include tagging
and branching.

Before a release, it is useful to branch the
repository. Branching creates an independent line of
development, separate from the standard development,
or head branch. Changes can then be made to stabilize
the release branch while continuing new development
on the head branch. Changes appropriate for multiple
branches can be merged from one branch to another.

A tag is a snapshot of the current state of the
repository. Tags are commonly used to create a bit-
wise identifiable release, to mark a point of departure
before a new development effort, or to create a
snapshot after changes are merged from another branch
so that the start of the next set of changes to be merged
is easily retrievable. Bit-wise identifiable releases are
very important because they eliminate ambiguity when
dealing with software faults. If a user has a problem
with your product, you know exactly what source code
generated the problem and you can provide them with
a new version that is also uniquely different.

The distinction between branches and tags is that a
branch is a new line of development and can be
modified. Tags are snapshots along a line of
development, and are not modifiable. Some version
control systems do not use tags, but rather use branches
for tags and branches. It is then up to the development
team to respect the concept of a tag and not modify that
branch.

Some source management tools, including SVN
and CVS, have associated source browsing and
viewing tools. ViewVC[6] is a tool that can be used
with SVN or CVS. Bonsai[7] is a tool that is
compatible only with CVS. Bonsai can search the
repository for all revisions based on user, branch,
filename, date, and CVS module, as well as other
criteria. It is also possible to browse through the
project directory structure to find current and historical
files and see the revision history for those files. Any
two versions of files can be compared for line-by-line
modifications.

2.3. Practice 3: Use mail lists to communicate

Mail lists allow for simple and effective
communication. There are numerous advantages to
using mail lists for a CSE software project. Rather
than sending a message about a project to a personally
selected group of recipients, mail lists allow interested
recipients to self-identify. Using a centralized mail list
tool instead of keeping personal lists of interested
recipients prevents the lists from getting stale - new
developers and users are not forgotten, and former
developers and users do not continue getting irrelevant
messages. Several different mail lists are appropriate
for many projects including:

• Users – Communication amongst users and
between users and developers. Commonly used as
a trouble-shooting list.

• Developers – Communication amongst and
important announcements for developers.

• Leaders – Communication amongst and important
announcements for project leaders (including a
subset of the developers and management or other
key stakeholders).

• Regression – Automated messages containing test
harness results.

• Check-in – Commit messages pertaining to code
modifications. Messages to this list should be

3

automatically generated from commit logs of the
source management tool.

• Announce – Announcements (often for releases or
new features).

Mail lists are also useful for archival purposes and
spam filtering. We have found Mailman[8] to be a
useful mail list tool.

It is worth noting that wikis may be used in
addition to mail lists. Wikis have the advantage of
hypertext browsing, real-time editing and collaborative
development of content. However, they are not a
replacement for mail lists. Directed content delivery by
email, and archiving of mail list messages are critical
capabilities.

2.4. Practice 4: Use checklists for repeated
processes

Checklists are valuable tools for making easily
repeatable processes and for training purposes. The
Trilinos project uses several different checklists,
including a variety of release checklists, a new
developer checklist, and a CVS commit checklist.
Completing each item on the release checklists makes
it much easier to remember an important, but easily
omitted, step such as posting the documentation on the
website for the latest release version, or updating the
list of changes for the current minor release.

When training a new developer, a checklist can
help to make sure that the developer is familiar with all
of the tools and software used by the project, and that
common team practices are shared with the new team
member. Without proper training, it is easy for a new
developer to omit an important test, for instance, and
revise the code base without following the proper
policy.

2.5. Practice 5: Create barely sufficient,
source-centric documentation

As mentioned in the introduction of this paper, the
term “barely sufficient” reflects a minimalist attitude to
formal processes, adopting only those that have a large
impact. In a similar way, documentation should be
sufficient but minimal. In our experience, one of the
biggest mistakes a CSE software project can make is to
adopt large-scale formal document generation in a
project that is just starting to focus on explicit software
engineering practices. These documents require a

large effort, much of which is often done to satisfy an
external requirement, and does not benefit the project
team. Furthermore, these documents become out-of-
date quickly and therefore are irrelevant or even
misleading.

Instead we have found that a combination of near-
to-the-source and in-source documentation can be very
effective. Specifically we find that the following
approaches work well:
• User-callable functions and executables should be

documented in the source files, using minimal
markup such as that found in Doxygen[10].
Processing source files then generates
documentation. This approach makes it much
easier to keep documentation up-to-date.

• Higher-level conceptual documentation should be
custom-developed, but still tightly coupled to
examples that are part of the software repository.
As much as possible, examples in the
documentation should be extracted from actual
working examples in the repository.

• Requirements, analysis and design documentation
should be captured by appropriate tools such as
Bugzilla (for requirements) and UML graphics
tools (e.g., Microsoft Visio). Tools like Doxygen
can also be used for design discussions since they
produce UML diagrams directly from source code.
Documentation efforts should not result in long
hand-written, text documents until a project
reaches a level of maturity where there is little
change in software design and implementation.

Unfortunately, for many software teams, their first
experience with formal software engineering is an
imposed requirement to produce formal, detailed
requirements, analysis and design documentation that
adds little value to a CSE software project and distracts
developers from important science and engineering
work.

Formal documents certainly play a role in a
project, but should be developed after the product
architecture is stable. Formal documents are essential
when a product is ready for hand-off to a maintenance
team that is not the original scientific development
team.

4

The use of configuration management tools can
make software accessible to a much broader audience
and make software support much less expensive.
Building software using hand-written makefiles, which
is very common for CSE software, is challenging for a
large percentage of users. Providing a simpler method
of installation, such as a CMake-based[11] build
system, or better yet, a Linux RPM or Windows
installer will not only cut support costs for existing
users, but will also make the software available to a
group of users who previously chose not to take the
time to complete a complicated installation process.

CMake in particular is very portable and supplies a
rich set of build targets. The benefit of a CMake build
system will far outweigh the cost. Tools like Cmake
are trivial to use for simple projects and lead to
minimal overhead. For any code that requires more
than a simple, portable set of commands for
installation, configuration management tools are
challenging to adopt, but provide tremendous value in
the long run.

2.7. Practice 7: Write tests first, run them often

Testing is essential for any high-quality software
product, but many CSE developers view tests as
something that should be developed late in the
software development process since that is when a
product is available for testing. In our experience, we
find that the philosophy of test-driven development
[12] (TDD) is very valuable. TDD means that
developers write tests first, before the software product
is written, and provide a full coverage of the
functionality that the product is expected to deliver.

Writing a collection of tests first has a number of
benefits:
• Software test programs debug your design because

they mimic how the user will interface with your
product. In this way your design is validated to
some extent before implementing the product.

• Although initially all your tests will fail, as your
software product is developed, an increasing
number of tests will pass, giving you a measure of
how close you are to completing your
implementation.

• A full suite of tests provides you with confidence
to revise your software after the initial
implementation and improves the long-term
quality of your product as it matures.

Adopting TDD as a habit can be a cultural
challenge, since writing the tests delays the initial
development of source code. But in our experience it
provides tremendous value by greatly reducing
development costs and improving long-term software
quality.

2.8. Practice 8: Program tough stuff together

Pair programming is a concept formalized by
Extreme Programming [13]. This approach to software
development means that two people sit together and
develop software. In our experience, this practice is
not natural for CSE developers, who are more used to
sitting by themselves to carefully write source code.
Therefore, we do not advocate pair programming for
all development. However, we have found that for
development of complex software functions, working
with a partner side-by-side is very valuable. This is
especially true for situations where one developer is
incorporating the use of another developer’s software.
In this situation, having the second developer act as a
“navigator” for the first developer provides value to
both developers. The activity produces superior
software and provides important feedback to the
second developer.

2.9. Practice 9: Use a formal release process

When combined with continual process
improvement (Practice 10), following a formal release
process is an invaluable practice for a software team.
When a software project is just getting started, an
appropriate release process may simply be to run some
reasonable set of tests on a defined set of platforms,
and tag the new version when all of those tests pass.
Even in a simple case, verifying that the test suite runs
on supported platforms and making sure that a released
version of the code is bit-wise identifiable makes user
support much more manageable and efficient.

For larger software projects, a formal release
process is essential, not only for reaching a stable point
at which a release can occur, but also for managing the
process in a controlled way so that when all necessary
processes have been completed, a release can be
completed with greater confidence.

As Trilinos and its user base have grown, the
release process for a major release has gone from an

2.6. Practice 6: Use configuration management
tools

5

informal series of tests on a release branch to a much
larger, coordinated effort. In addition to Trilinos level
testing, we work with multiple key users to certify their
test suite against the release candidate. After each
release, the processes are reviewed for ways to
improve the next release.

Completing the entire major release process for
each minor release (typically providing bug fixes or
very small enhancements) does not provide enough
benefit to justify the cost, so a subset of the major
release process is used. This carefully chosen subset is
periodically evaluated for effectiveness, and to
consider significant changes, such as the availability of
additional automated testing results from key user
applications.

2.10. Practice 10: Perform continual process
improvement

Improving software processes is an on-going
effort. Any software process, no matter how poorly
defined, can be written down and improved upon, and
any process, no matter how mature, can be made
better.

Consider the process of training a new developer.
Depending on which team member is conducting the
training, what training takes place can vary greatly.
Until a draft process is recorded, the training used will
be haphazard, based on what the trainer happens to
remember. By standardizing the training with a
checklist, consistent training that touches on the most
important aspects of the job can be given to each new
team member. Even if the initial checklist is lacking
some items, at least some items will be covered, and
missing items or new items will be added over time
through conscious process improvement.

Every time a checklist is used, the user should
consider whether or not modifications are necessary.
Having several people use the same checklist allows
the opportunity to combine all of the best ideas into
one standard list.

Another important aspect of process improvement
is to include items on process checklists that reflect
future goals, rather than current requirements. For
example, one optional item on a package release
checklist could be measuring the code coverage
provided by the test suite. In the future, a project could

compute code coverage for all releases, but by
including the item on the current checklist, we ease the
transition if measuring code coverage becomes a
requirement, and provide concrete evidence of process
improvement.

3. Conclusions

CSE software can benefit from modern software
engineering practices and processes. At the same time,
because the goal of CSE software is often research and
development such that the software product is just one
output, too much emphasis on software processes can
put a project at risk. The 10 practices we present in
this paper should not require a large effort for most
CSE software teams and, once adopted, should provide
a qualitative improvement in the overall software
development process, producing better quality software
with less effort and giving CSE project teams more
time for science and engineering research and
development.

4. References

[1] M. A. Heroux, "Trilinos Home Page”,
http://trilinos.sandia.gov, 2009.

[2] "Agile Software Development Home Page",
http://www.agile-software-development.com, 2009.

[3] Tigris.org, "Subversion Home Page",
http://subversion.tigris.org, 2009.

[4] "Concurrent Versions System Home Page",
http://www.nongnu.org/cvs, 2009.

[5] Scott Chacon, "Git – Fast Version Control System Home
Page" http://git-scm.com, 2009.

[6] Tigris.org, "ViewVC Home Page",
http://www.viewvc.org, 2009.

[7] Mozilla, "Bonsai Project Home Page",
 http://www.mozilla.org/projects/bonsai, 2009.

 [8] GNU, "Mailman, the GNU Mailing List Manager Home
Page", http://www.gnu.org/software/mailman, 2009.

[9] Mozilla, "Home::Bugzilla::bugzilla.org Home Page",
http://www.bugzilla.org, 2009.

[10] Dimitri van Heesch, "Doxygen Home Page" ,
http://www.stack.nl/~dimitri/doxygen, 2009.

6

[11] Kitware, "Cmake - Cross Platform Make Home Page",
http://www.cmake.org, 2009.

[12] K. Beck, Test Driven Development: By Example,
Addison-Wesley, Boston, 2003.

[13] K. Beck, Extreme Programming Explained, Addison-
Wesley, Boston, 2005.

7

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Abstracts Book
	Abstracts Card for this Manuscript

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Links to Other Manuscripts by the Authors

	**** PREPRESS PROOF FILE
	**** NOT FOR DISTRIBUTION
	**** BOOKMARKS ARE INACTIVE
